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ABSTRACT
Multi-objective genetic algorithms (MOGA) are used to
optimize a low-thrust spacecraft control law for orbit transfers
around a central body. A Lyapunov feedback control law called
the Q-law is used to create a feasible orbit transfer. Then, the
parameters in the Q-law are optimized with MOGAs. The
optimization goal is to minimize both the flight time and the
consumed propellant mass of the trajectory created by the Q-
law, and consequently to find Pareto-optimal trajectories. To
improve the qualities of the obtained Pareto-optimal
solutions, elitism and a diversity-preservation mechanism are
incorporated into MOGA. The MOGA performance with and
without the new mechanisms are systematically compared and
evaluated with quantitative metrics. The new mechanisms
significantly improve the convergence and distribution of the
resulting Pareto front for the low-thrust orbit-transfer
optimization problem. The new mechanisms also improve the
statistical stability and the computational efficiency of the
algorithm performance.  

Categories and Subject Descriptors
Real-World Applications
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1. INTRODUCTION
Many real-world optimization problems involve multiple
competing objectives, which give rise to a set of
compromising solutions rather than a single optimal solution.
Spacecraft trajectory design is such a multi-objective
optimization problem. Optimal trajectories are the ones that
minimize both flight time and propellant consumption.
Reduction of flight-time often competes with propellant
saving. The competition leads to a trade-off between the two
resources. The reasonable estimation of the trade-off is the key
in spacecraft trajectory design.

The trajectories of interest here are orbit transfers around a
central body, where the spacecraft uses a low-thrust propulsion

system. Low-thrust propulsion is promising for future deep-
space missions, because despite its low thrust levels, the
momentum transfer per kilogram of propellant is ten to twenty
times greater than that for chemical propulsion. In fact,
NASA’s future space missions Dawn and JIMO will use electric
propulsion for inter-planetary cruise and orbital operations.
However, the control of low-thrust spacecraft poses a
challenging design problem, particularly for orbit transfers
around a central body because it involves a large number of
revolutions and thrust arcs along these revolutions.  

In trajectory optimization, there are two main approaches:  One
is to develop a thrust control law that guides a trajectory
design [2,6-8,10-12], which we call “guided search”. The other
is to optimize trajectories without a thrust control law
[1,5,14,15], which we call “unguided search”. The guided
search restricts the search space, but simplifies the
optimization problem such that it can efficiently estimate
optimal trajectories. In contrast, the unguided search explores
a wider search space and has a potential to find a better
solution than the guided search, but is computationally more
demanding.     

Here, we take the guided search approach to optimize low-
thrust spacecraft orbit transfers. Among the several thrust-
control laws available in the literature [2,6-8,10-12], one
promising control law is the Q-law [10-12], which is based on
Lyapunov feedback control. The Q-law involves a set of
control parameters that are left free for the mission designer to
manipulate. The Q-law, with default values for the control
parameters, provides reasonable estimates of Pareto-optimal
solutions, indicating that a suitable Lyapunov function has
been found and that optimization of the control parameters
should yield near-Pareto-optimal solutions.

Previously [9], we have performed the optimization of the Q-
law control parameters with a multi-objective genetic
algorithm based on the non-dominated sorting genetic
algorithm (NSGA) [13]. We have demonstrated that NSGA
efficiently finds optimal Q-law control parameters for a wide
variety of orbit transfers [9], and yields Pareto-optimal orbit
transfers that are comparable to those obtained with the
unguided search [5,14,15]. However, the previous approach
leads to Pareto-optimal solutions that are clustered toward the
short flight time zone. A wider and uniform spread of Pareto-
optimal solutions is desired. Recently, Deb et al. have
introduced elitism and diversity preservation mechanisms to
NSGA to improve the algorithm performance [3,4]. The revised
algorithm, named NSGA-II, has been applied to many
theoretical and real-world problems, and is shown to be more
efficient than its predecessor [3,4]. Hence, the two new
mechanisms are included in our optimization process. The
optimization performance with and without the new
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mechanisms are systematically compared and evaluated in
order to identify the effect of the new mechanisms.

2. PROBLEM
2.1 Q-law
The Q-law is a Lyapunov feedback control law developed by
Petropoulos to provide good initial estimates for optimal
orbit transfers between two arbitrary orbits around a central
body [10-12]. The Q-law determines when and at what angles
to thrust, based on the proximity quotient termed Q. The
function Q judiciously quantifies the proximity of the
osculating orbit to the target orbit. In the Q-law, the central
body is modeled as a point mass, and no perturbing forces are
considered.

The Q-law has up to 15 free control parameters, which mission
designers can adjust. The control parameters affect the
effectivity of thrust usage and the geometry (gradient, maxima,
minima, saddle points, etc.) of the proximity quotient Q. A
different effectivity of thrust usage leads to a different length
or location of a thrust arc, and a different geometry of Q leads
to a different thrust angle or shifts thrust-arc location. Hence,
the mission designer can acquire a different trajectory for a
different set of the Q-law control parameters. For a detailed
discussion of the mechanisms of the Q-law, readers are referred
to Refs. [10-12].

2.2 Q-law Optimization
For a given set of the control parameters, the output of the Q-
law is a series of thrust arcs and thrust angles together with the
resulting required flight time and propellant mass. The desired
outcome for the mission designer is knowledge of the trade-off
between flight time and propellant mass, and the Pareto-
optimal trajectory corresponding to each point on the trade-off
curve. Therefore, our optimization problem is to minimize the
competing objectives of flight time and required propellant
mass while varying the Q-law control parameters.   

Table I. Initial and target orbit elements, spacecraft thrust,
spacecraft specific impulse, spacecraft initial mass, and

central body of the orbit transfer considered. The listed orbit
elements are semimajor axis (a), eccentricity (e), inclination
(i), the argument of periapsis (ω),  the longitude of ascending

node (Ω), and true anomaly (f). Note that the target values
for inclination, argument of periapsis, longitude of

ascending node, and true anomaly are left free.

Orbit a
(km) e i

(deg.)
ω

(deg.)
Ω

(deg.)
f

(deg.)

Initial 24506 0.2 0.6 0.0 0.0 0.0

Target 26500 0.7 Free Free Free Free

Thrust Specific
Impulse (s)

Initial Mass
(kg) Central Body

9.3 3100 300 Earth

Figure 1. Flight-time optimal and propellant optimal
trajectories for the orbit transfer around a central body

Low-Thrust Orbit-Transfer. The trajectories end at different
locations because the final arguments of periapsis and the

final true anomalies are different.

2.3 Low-Thrust Orbit Transfer
The Q-law optimization is applied to an orbit transfer from a
low-eccentricity elliptic orbit to a coplanar, high-eccentricity,
larger elliptic orbit. The maximum-permitted flight time is 20
days. The details of the orbit transfer are listed in Table I.
Typical flight-time-optimal a n d  propellant-optimal
trajectories for the orbit transfers are shown in Figure 1. The
flight-time-optimal trajectory involves a small number of
revolutions because the spacecraft thrusts most of the time.  In
contrast, the propellant-optimal trajectory involves a large
number of revolutions due to long coasting (no-thrust) arcs.
Seven Q-law parameters are relevant to this orbit transfer:
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3. METHODS
The optimization of the Q-law control parameters is performed
with MOGAs. The algorithm parameter setting, algorithm core
mechanisms, and performance metrics used for our
optimization process are described in the following three sub-
sections.

3.1 MOGA Parameters
For all MOGA optimization runs, the following common
parameters and operators are used. Each of the 7 Q-law control
parameters is represented by a real-valued gene. The
population size is set to 100. Parents are selected through
binary tournament. Offspring are created with the simulated
binary crossover operator and the polynomial mutation
operator [3]. The distribution parameters associated with the
simulated binary crossover and the polynomial mutation
operators are ηc=2 and ηm=100. The crossover probability i s
0.8 and the mutation probability per gene is 1/7. After 200
generations, the genetic evolution is terminated. Table II
summarizes the genetic algorithm parameters and operators
used for our optimization problem.



Table II: Genetic Algorithm Parameter Setting.

Algorithm Parameter Value

Population Size 100

Generations 200

Number of Parameters 7

Selection Operator Binary Tournament

Crossover Operator Simulated Binary with ηc=2

Mutation Operator Polynomial with ηm=100

Crossover
Probability 0.8

Mutation Probability 1/7 per gene

 

3.2 Core Mechanisms
The core mechanisms used to handle our multi-objective
optimization problems are based on NSGA and NSGA-II.
NSGA-II [4,13] is an enhanced version of its predecessor NSGA
and involves two new mechanisms in comparison to NSGA.
Both NSGA and NSGA-II use nondominated sorting to
determine preliminary fitness values. The three core
mechanisms introduced in NSGA and NSGA-II are briefly
summarized below. More details can be found in Refs. [3,4].  

3.2.1 Nondominated Sorting
Non-dominated sorting proceeds as follows. First, non-
dominated individuals in the current population are
identified. The non-dominated individuals are those who are
not inferior to any other individuals in the population with
respect to every objective. The same fitness value is assigned
to all the non-dominated individuals. The individuals are then
ignored temporarily, and the rest of the population i s
processed in the same way to identify a new set of non-
dominated individuals. A fitness value that is smaller than the
previous one is assigned to all the individuals belonging to
the second non-dominated front. This process continues until
the whole population is classified into non-dominated fronts
with different fitness values.

3.2.2 Elitism
Unlike its predecessors, NSGA-II allows the parents to compete
with offspring. In each generation, an offspring population of
size N is generated from a parent population of the same size.
The two populations are combined, and the first N best-fit
individuals from the combined population are chosen to be
part of the next generation population. The main purpose of
this mechanism is to prevent fit individuals found in earlier
generations from being lost easily.

3.2.3 Diversity-Preservation
The original NSGA uses the well-known fitness-sharing
approach to preserve the diversity among the Pareto-optimal
solutions. Although the fitness-sharing approach is found to
maintain diversity in a population, the performance largely
depends on its associated parameter. To avoid this sensitivity,
Deb et al., have introduced a “crowding distance comparison”
approach. First, the crowding distance surrounding a particular
solution is measured. The crowding distance is given by the
perimeter of the cuboid formed by using the nearest neighbors

in the same non-dominated front as the vertices. Second, the
crowding distance is used to break a tie when two solutions
have the same fitness, i.e. they belong to the same
nondominated front. A solution with a higher crowding
distance becomes a winner. By preferring the solution with a
higher crowding distance, this mechanism encourages
population diversity.

3.3 Performance Metrics
The performance assessment of multi-objective optimizers
should take at least the following two criteria into account: i)
the distance of the obtained solutions to the Pareto front, ii)
the distribution of the obtained solutions. Various
performance metrics to measure these aspects have been
introduced in the literature [3,4,13,16]. Some of the metrics
require the knowledge of the “true” Pareto-optimal solutions,
which are largely unknown in our optimization problem.
Taking this limitation into account, we chose the following
three measures: 1) size of the dominated space, 2) coverage of
two Pareto fronts, and 3) non-uniformity of the Pareto front.
The first two metrics measure the convergence of the Pareto-
optimal solutions, while the last metric measures the
distribution of the Pareto-optimal solutions.

3.3.1 Size of the dominated space
The size of the dominated space S(A) is a measure of how much
of the objective space is weakly dominated by a given non-
dominated set A. As an example, the size of the dominated
space is illustrated in Figure 2. Since our optimization
involves the minimization of two objectives, a reasonable
maximum value for each objective (maxI and maxII) is chosen
to determine the size of the dominated space. Higher values of
S(A) indicate better performance.

Figure 2. Space dominated (colored in orange) by a given
Pareto set when two objectives are minimized.

3.3.2 Coverage of two Pareto fronts
This measure compares two Pareto-optimal sets to each other.
When two Pareto-optimal sets A and B are given, the coverage
C(A,B) of the two Pareto fronts maps the ordered pair (A,B) to
the interval [0, 1]:
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where |B | means the number of solutions in the set B, and
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a f b means that solution a dominates solution b, i.e., the
objectives of a are both less than those of b. Therefore, C(A,B)
gives the fraction of B dominated by A. For example, C(A,B)=1



means that all individuals in B  are dominated by A . The
opposite C(A,B)=0 represents the situation that no individual
in B is dominated by A.  Note that C(A,B) is not necessarily
equal to 1-C(B,A).  If C(A,B) > C(B,A), this means that the set A
has better solutions than the set B.       

3.3.3 Non-uniformity of Pareto front
To measure the non-uniformity of the distribution of a Pareto
front, we introduce the quantity D(A) given by the distribution
of the Euclidian distance (

€ 

di ) between two consecutive points
(solutions) along the Pareto front:
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This quantity is a standard deviation of the distances

normalized by the average distance 
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d . The Euclidian distance
depends on the scaling given to each of the objectives. Here,
the propellant mass objective is measured in kilograms, and
the flight time objectives in days. When D(A)=0, the spacing in
the Pareto front is uniform. The higher the value of D(A), the
more non-uniform the spacing in the Pareto front. Therefore, a
lower value of D(A) is desired.

4. RESULTS
We assess the improvement of MOGA performance due to the
elitism and diversity-preservation mechanisms by comparing
the following two approaches: 1) MOGA without the new
mechanisms (MOGA-I), 2) MOGA with the mechanism (MOGA-
II). Both MOGA-I and MOGA-II use non-dominated sorting to
assign preliminary fitness values. MOGA-I uses the
preliminary fitness values as the final ones, while MOGA-II
uses the crowded distance comparison to break a tie when two
solutions have the same preliminary fitness value, (i.e., they
belong to the same nondominated front). Note that MOGA-I i s
the algorithm used in our previous studies [9].

Twenty independent runs with different random seeds are
performed with MOGA-I and MOGA-II. MOGA-I finds about 35
Pareto-optimal solutions out of total 100 individuals. In
contrast, MOGA-II leads to a population of which all the
individuals are Pareto-optimal. The mean and standard
deviation of the number of Pareto-optimal solutions found by
MOGA-I and MOGA-II are listed in Table II. MOGA-II
consistently finds more Pareto-optimal solutions than MOGA-
I. The quality of the Pareto-optimal solutions obtained with
the two algorithms is measured by three qualitative metrics
S(A), C(A,B),  and D(A).

Table III shows the mean and variance of S(A) of MOGA-I and
MOGA-II. S(A) is measured in kilogram-days, with maxima in
the objectives taken as 40 kg and 20 days, respectively.
MOGA-II leads to a higher value S(A), indicating that better
solutions are obtained with MOGA-II than with MOGA-I. The
difference between the two means is twice as big as the
standard deviation of MOGA-I. Furthermore, the standard
deviation of MOGA-II is significantly smaller than that of
MOGA-I, indicating that the performance of MOGA-II i s
statistically more stable.

Table IV lists the mean and standard deviation of C(A,B) for
MOGA-I and MOGA-II. The value C(MOGA-II, MOGA-I)= 0.812
means that 81.2% of the Pareto-optimal solutions obtained
with MOGA-I are dominated by the solutions with MOGA-II.

Similarly, the value C(MOGA-I, MOGA-II)=0.021 represents
that only 2.1% of the solutions obtained with MOGA-II are
dominated by those with MOGA-I.  

The distributions of the solutions obtained with MOGA-I and
MOGA-II are evaluated with non-uniformity metric D(A). Table
V shows the mean and variance of D(A) of the MOGA-I and
MOGA-II runs. A lower value of D(A) means a better/uniform
spread of solutions. The comparison of D(A) shows that the
spread of the solutions found with MOGA-II is more uniform
than with MOGA-I.

All three metric measurements show that MOGA-II clearly
outperforms MOGA-I. More specifically, metrics S(A) and
C(A,B) measurements show that MOGA-II leads to a better
convergence of the Pareto front, and D(A) measurements show
that MOGA-II leads to a more uniform distribution of the
Pareto front. To illustrate the difference between the Pareto
fronts obtained with MOGA-I and MOGA-II, the Pareto fronts
obtained with one of the twenty runs of MOGA-I and MOGA-II
are plotted in Figure 3.

Table II. Mean and standard deviation of the number of
Pareto-optimal solutions obtained with twenty independent

runs of MOGA-I and MOGA-II. MOGA-II consistently finds
more Pareto-optimal solutions than MOGA-I.

Algorithm Mean Standard Deviation

MOGA-I 34.70 3.38

MOGA-II 100 0.00

Table III. Mean and standard deviation of metric S(A), in
units of kg*day, of Pareto fronts obtained with twenty

independent runs of MOGA-I and MOGA-II.  A higher value
means a better convergence of the Pareto front.

Algorithm Mean Standard Deviation

MOGA-I 399.70 2.50

MOGA-II 405.51 0.35

Table IV. Mean and standard deviation of metric C(A,B)  for
a pair of Pareto fronts obtained with twenty independent

runs of MOGA-I and MOGA-II.

A B Mean Standard Deviation

MOGA-II MOGA-I 0.812 0.083

MOGA-I MOGA-II 0.021 0.021

Table V. Mean and standard deviation of the non-uniformity
metric D(A) of Pareto fronts obtained with twenty

independent runs of MOGA-I and MOGA-II. A lower value
means a more uniform spread of the Pareto front.

Algorithm Mean Standard Deviation

MOGA-I 0.279 0.071

MOGA-II 0.056 0.007

In addition to the performance at the end of the evolution, the
performance of MOGA-I and MOGA-II during the evolution i s



also monitored. Figure 4 shows the evolution of metrics S(A)
and D(A) with respect to generation number. MOGA-II shows a
faster convergence and a more stable performance than MOGA-
I.  These results show that MOGA-II not only finds better
solutions, but also finds them faster and more reliably. For
smooth evolutions like those obtained with MOGA-II, the
rates at which the dominated space size metric S(A) and the
non-uniformity metric D(A) constitute excellent criteria for the
optimization termination condition.  

Figure 3. Pareto-optimal solutions obtained with MOGA-I
and MOGA-II.  The solutions of MOGA-II show a better

convergence and distribution of the Pareto front.

Figure 4. Evolution of metrics S(A) and D(A) with respect to
generation number for MOGA-I and MOGA-II. MOGA-II

shows more efficient performance.

5. CONCLUSIONS
We have applied multi-objective genetic algorithms to the
optimization of a low-thrust control law for orbit transfers
around the Earth. A Lyapunov feedback control law called the

Q-law is used to create an eligible orbit transfer, while the Q-
law control parameters are selected with the multi-objective
algorithms. Two resources, flight time and propellant mass, are
minimized and a trade-off between the two resources i s
obtained.  Elitism and a diversity-preservation mechanism are
incorporated into MOGA to improve the optimization
performance. The MOGA performance with and without the new
mechanisms is systematically compared and evaluated in order
to identify the contribution of the new mechanisms. Three
quantitative performance metrics were used: 1) size of the
dominated space, 2) coverage of two Pareto fronts, and 3) non-
uniformity of the Pareto front. The first two metrics measure
the convergence of the Pareto front, and the last metric
measures the distribution of the Pareto front. We find that the
elitism and diversity-preservation mechanisms significantly
improve the convergence and spread of the resulting Pareto-
optimal solutions. The performance difference between MOGA
with and without the new mechanisms is as large as one order
of magnitude in terms of the three quantitative metrics. The
performance difference also appears in the variation of the
metrics with respect to generation number. The new
mechanisms lead to a better Pareto front more efficiently and
reliably.   
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